首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   2篇
  国内免费   1篇
大气科学   1篇
地球物理   6篇
地质学   10篇
海洋学   1篇
天文学   9篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2009年   4篇
  2007年   4篇
  2005年   2篇
  2001年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
21.
The role of bedrock groundwater in rainfall–runoff processes is poorly understood. Hydrometric, tracer and subsurface water potential observations were conducted to study the role of bedrock groundwater and subsurface flow in the rainfall–runoff process in a small headwater catchment in Shiranui, Kumamoto prefecture, south‐west Japan. The catchment bedrock consists of a strongly weathered, fractured andesite layer and a relatively fresh continuous layer. Major chemical constituents and stable isotopic ratios of δ18O and δD were analysed for spring water, rainwater, soil water and bedrock groundwater. Temporal and spatial variation in SiO2 showed that stream flow under the base flow condition was maintained by bedrock groundwater. Time series of three components of the rainstorm hydrograph (rainwater, soil water and bedrock groundwater) separated by end member mixing analysis showed that each component fluctuated during rainstorm, and their patterns and magnitudes differed between events. During a typical mid‐magnitude storm event, a delayed secondary runoff peak with 1·0 l s−1 was caused by increase in the bedrock groundwater component, whereas during a large rainstorm event the bedrock groundwater component increased to ≈ 2·5 l s−1. This research shows that the contribution of bedrock groundwater and soil water depends strongly on the location of the groundwater table, i.e. whether or not it rises above the soil–bedrock interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
22.
In order to evaluate the environmental impact associated with sequestration of carbon dioxide in the deep sea, a free fall type field experimental device, the benthic chamber, was developed. In situ experiments to expose deep-sea communities to elevated concentrations of carbon dioxide (average of 20,000 ppm, 5,000 ppm and control) were carried out using this device 3 times, viz., in the winter of 2002 and in the spring and the summer of 2003, in the Kumano Trough at a depth of 2,000 m. In the long-term experiments (about two weeks in winter of 2002 and summer of 2003), the abundance of meiobenthos declined whereas that of bacteria increased under the condition of 20,000 ppm carbon dioxide compared with the control. Among meiofauna, the abundance of foraminifers at the same concentration of carbon dioxide became less than the control even in the short-term (3 days in spring of 2003) experiment, suggesting that organisms with a calcium carbonate exoskeleton are more sensitive to the raised concentration of carbon dioxide. The respiration rate of the benthic community exposed to 20,000 ppm was lower in the early stage of the experiment than in the latter half, whereas it was opposite under the condition of 5,000 ppm. The increase of biological activity in the 20,000 ppm exposure group is probably due to an increase of bacteria adapted to high carbon dioxide concentrations. The present results suggest that the influence of carbon dioxide on the deep-sea benthic ecosystem does not follow a simple, linear relationship with concentration.  相似文献   
23.
We measured the electrical resistivity of face-centered-cubic (fcc) structured iron hydrides at high pressures up to 65 GPa and high temperatures in a laser-heated diamond anvil cell. The results indicate that the resistivity of stoichiometric fcc FeHx (x ~ 1.0) is smaller than that of fcc Fe at the same pressure and temperature conditions. The same behavior was also observed in fcc FeNiHx (x ~ 1.0). On the other hand, hydrogen-poor fcc FeHx (x < 0.77) showed a resistivity comparable to that of the fcc phase of pure iron. Therefore, we conclude that the stoichiometric fcc Fe (–Ni) hydride is more conductive than Fe (–Ni) with the same crystal symmetry, and the impurity resistivity of hydrogen in Fe is vanishingly small. Even if hydrogen is the major light element in the Earth's core, it would have little influence on the electrical and thermal conductivity of Fe–Ni alloys, and hence the thermal evolution of the core.  相似文献   
24.
Understanding rainfall‐runoff processes is crucial for prevention and prediction of water‐related natural disasters. Sulfur hexafluoride (SF6) is a potential tracer, but few researches have applied it for rainfall‐runoff process studies. We observed multiple tracers including SF6 in spring water at 1‐ to 2‐hr intervals during rainstorm events to investigate the effectivity of SF6 tracer in rainfall–runoff studies through the clarification of rainfall–runoff process. The target spring is a perennial spring in a forested headwater catchment with an area of 0.045 km2 in Fukushima, Japan. The relationship between the SF6 concentration in spring water and the spring discharge volume was negative trend; the SF6 concentration in spring water becomes low as the spring discharge volume increases especially during rainstorms. The hydrograph separation using SF6 and chloride ion tracers was applied for determining the contribution of principal sources on rainfall–runoff water. It suggested more than 60% contribution of bedrock groundwater at the rainfall peak and high percentage contribution continued even in the hydrograph recession phase. Based on observed low SF6 concentration in groundwater after heavy rainfall, the replacement of groundwater near the spring with bedrock groundwater is indicated as a mechanism for water discharge with low SF6 concentration during rainfall events. Consequently, rainstorm events play an important role as triggers in discharging water stored in the deeper subsurface area. In addition, SF6 tracer is concluded as one of the strongest tracers for examining rainfall–runoff process studies. And, therefore, this study provided new insights into the dynamics of groundwater and its responses to rainfall in terms of SF6 concentration variance in water in headwater regions.  相似文献   
25.
Chemical reactions and volatile supply through hypervelocity impacts may have played a key role for the origin and evolution of both planetary and satellite atmospheres. In this study, we evaluate the role of impact-induced N2 production from reduced nitrogen-bearing solids proposed to be contained in Titan’s crust, ammonium sulfate ((NH4)2SO4), for the replenishment of N2 to the atmosphere in Titan’s history. To investigate the conversion of (NH4)2SO4 into N2 by hypervelocity impacts, we measured gases released from (NH4)2SO4 that was exposed to hypervelocity impacts created by a laser gun. The sensitivity and accuracy of the measurements were enhanced by using an isotope labeling technique for the target. We obtained the efficiency of N2 production from (NH4)2SO4 as a function of peak shock pressure ranging from ∼8 to ∼45 GPa. Our results indicate that the initial and complete shock pressures for N2 degassing from (NH4)2SO4 are ∼10 and ∼25 GPa, respectively. These results suggest that cometary impacts on Titan (i.e., impact velocity vi > ∼8 km/s) produce N2 efficiently; whereas satellitesimal impacts during the accretion (i.e., vi < 4 km/s) produce N2 only inefficiently. Even when using the proposed small amount of (NH4)2SO4 content in the crust (∼4 wt.%) (Fortes, A.D. et al., 2007. Icarus 188, 139-153), the total amount of N2 provided through cometary impacts over 4.5 Ga reaches ∼2-6 times the present atmospheric N2 (i.e., ∼7 × 1020-2 × 1021 [mol]) based on the measured production efficiency and results of a hydrodynamic simulation of cometary impacts onto Titan. This implies that cometary impacts onto Titan’s crust have the potential to account for a large part of the present N2 through the atmospheric replenishment after the accretion.  相似文献   
26.
Abstract— We obtained color images of near‐Earth asteroid 25143 Itokawa by the Hayabusa multiband imaging camera to characterize the regional color properties. Images were obtained for the whole disk from the gate position (GP) and home position (HP) at a spatial resolution of 0.8–3.7 m/pixel. Whole‐disk spectra are adjusted to the telescopic data obtained by the University of Hawai'i's 88‐inch telescope using the Eight Color Asteroid Survey (ECAS) system. The disk‐resolved measurements show large variations in the three visible channels. We present a map of an index related to the degree of space weathering, which has been newly developed based on laboratory measurements. We find large variations in the degree of space weathering on Itokawa. Fresh materials are observed in regions of steep slopes and craters, whereas mature materials are ubiquitously distributed. This result suggests that pristine ordinary chondrite‐like materials have been exposed through weathered layers by excavation. By also examining close‐up images obtained during touchdown rehearsal, we find that most rocks in Itokawa's rough terrains are weathered. Instead of a regolith blanket, the surface of this small asteroid is covered with weathered rocks and gravels.  相似文献   
27.
Recent noble gas data of mantle-derived samples show that there are two end members: PLUME-type and MORB-type. The estimated high 3He and 22Ne abundances of the PLUME source, possibly representing the lower mantle, should reflect the remnant of dissolved solar-type atmosphere. Calculations of the structure of the primary atmosphere and the noble gas dissolution into the magma ocean of the accreting planet suggest that the high 3He and 22Ne abundances can be explained if the primary atmosphere persisted until M0.4–0.6 ME (ME being the present Earth mass). The PLUME source has higher 3He/4He and lower 21Ne/22Ne than the MORB source. This is explained by assuming that the lower mantle was less degassed during magma ocean cooling. The carbon abundance in the mantle can be constrained from the estimated abundance of mantle 3He and C/3He data of the present mantle-derived samples. Dissolved solar-type noble gas might explain high noble gas abundance in the present Venus, if the primary atmosphere persisted until the final stage of accretion under lower dust opacity of the atmosphere.  相似文献   
28.
Katagiri  Jun  Kimura  Sho  Noda  Shohei 《Acta Geotechnica》2020,15(8):2195-2203
Acta Geotechnica - This paper is a study of determination of representative elementary volume (REV) size suitable for pore-scale flow simulation (PFS) and evaluation of permeability anisotropy for...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号